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FOREWORD

The work reported herein was performed at the Metals Behavior
Branch, Metals and Ceramics Division, Air Force Materials Laboratory
under Contract F33615-77-C-5003 with the Southeastern Center for
Electrical Engineering Education. The work was conducted by Dr. Donald
C. Stouffer, on leave from the University of Cincinnati and Dr. Sol R.
Bodner, on leave from the Technion-Israel Institute of Technology in
Haifa. Air Force administrative direction and technical support was
provided by Dr. Theodore Nicholas, AFML/LLN.

The authors are grateful to Dr. Theodore Nicholas for arranging the
collaborative effort and providing a stimulating environment in which
to work. Also his comments duririg the project were very helpful.

The research was conducted during the period July 1978 to October
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SECTION I
INTRODUCTION

An unresolved problem in the characterization of plastic deformation
of metals is the formulation of hardening laws that would realistically
represent hardening properties for completely general loading histories.
Most of the proposed theories follow classical plasticity so the problem
becomes one of predicting the size and shape of yield surfaces subsequent
to loading in the plastic range. These laws are generally some combination
of the isotropic and kinematic hardening models and reduce to either of
those as a special case. A feature common to many of these hardening
laws is a "back stress” term which corresponds to a translation of the
origin in the kinematic model. Examples of these hardening formulations
have been discussed recently in the proceedings of several conferences

(References 1, 2, 3), and others have since been proposed (References 4, 5).

For constitutive equations that do not require a yield criterion,
the corresponding problem is the determination of suitable evolutionary
equations for the internal state variables. These variables appear in
the equations for plastic deformation rate and represent the load history
dependent worked state of the material with respect to plastic flow.

Most of the earlier work in the development of such constitutive equations
employed one or two scalar functions of deformation history for the
inelastic state variables. As an example, Bodner and Partom (References
6, 7), used a single scalar function of plastic work as the inelastic
state variable for isotropic hardening conditions, e.g. uniaxial stress
with no Bauschinger effect. In this theory the plastic strain rate is
assumed to exist at all stress levels so the "back stress”" concept does
not appear to be particularly useful since it would correspond to a non-
zero plastic deformation rate at zero applied stress.

The main problem in generalizing the constitutive equations to
multidimensional stress states is the development of suitable evolu-
tionary equations for the inelastic state variables. These equations
are required to account for the loading induced changes in resistance
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to plastic flow which vary in orientation as well as with the sign of

the applied stress (or plastic deformation rate). The material therefore
develops both orientational anisotropy and a multidimensional Baushinger
effect which depends upon the complete loading history. Under the most
general stress state with six stress components, a minimum of 12 inelas-
tic state variables (components) would be required to characterize the
material state with respect to plastic deformation; this assumes a

single variable would apply for each orientation and direction of the
plastic rate of deformation component.

The purpose of this report is to develop a proper mathematical
formulation for the evolutionary equations required to represent the
inelastic state of material subjected to general loading histories at
large deformations. The procedure is motivated by earlier work of
Bodner (Reference 8) and Onat (Reference 9) and the constitutive equations
of Bodner and Partom (References 6, 7, 10, 11) but the development is
completely general and could be applied to any set of constitutive
equations that employ inelastic state variables. A consequence of this
| development is that a procedure is obtained that could account for
induced plastic anisotropy for arbitrary loading histories. The limited
comparisons possible with experimental data indicate that the proposed
procedure is consistent with these observations.
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SECTION II
A CONSTITUTIVE MODEL FOR ISOTROPIC DEFORMATIONS

Let dij represent the rate of deformation in an Eulerian coordinate
system at any time t. The rate of deformation, defined as the symmetric
part of the velocity gradient, is written as

$ o ar

Reg g Ay (1)

the composition of an elastic rate of deformation, d;., and an inelastic

e
iJ
(or plastic) rate of deformation dg. . The elastic component is fully
recoverable whereas the inelastic component is nonreversible. The

decomposition (Equation 1) is a very fundamental part of the current

e R L TR T ) USRNG5 X T TR pr 1o

development since we assume that both components are non-zero under the

| action of all non-zero deviatoric stress components. A continuous
representation of plastic flow is thereby obtained without the use of a :
i yield surface or loading and unloading conditions.

This study is directed toward developing a representation for
anisotropic plastic flow at large strains where the plastic anisotropy
could be initial, deformation induced, or both. Elastic strains for
metals are generally small even with large plastic deformations so it
would be generally appropriate to use an isotropic elastic formulation

if the material were initially isotropic. It is also well established
that large plastic deformations have small effects on the elastic con-

T =

stants even with significant induced plastic anisotropy. The mathe-

matical treatment of the elastic deformation rate d?j at large strains L
would then be that given in Reference 11. Strong elastic anisotropy

could be treated by classical linear anisotropic elasticity if the A
elastic strains were not large. The case of strong elastic anisotropy

and large elastic strains is practically rare and would have to be

treated as a special problem. 9
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The governing law for isotropic, plastic deformation is taken in
a form similar to the Prandt1-Reuss flow law

= X(Jz. z T)S

R K' 7] (2)
The quantities g?j and sij are the deviatoric components of the rate of
plastic deformation and stress tensors. Thus Equation 2 implies that
isotropic inelastic deformation is isochoric. The scalar material
function ) is assumed to be a function of the second invariant of the
deviatoric stress tensor, JZ’ the absolute temperature, T, and a set of
internal state variables, zg. The quantities z, are used to describe
the state of the material microstructure at any time t; thus, they
depend on the history of the deformation up to the current time t and
are given by an evolution equation of the form
;';K(c) = £,(J 2,0 T (3)

To begin to establish a definite structure for Equations 2 and 3,
let us use one specific component, z, of the vector z as a hardening
term; e.g. an increase in z corresponds to an increase in the resistance
to plastic flow. Thus assume the hardening rate, z is a monotonically

increasing function of the plastic work

L
< b p
5 (O JO S, (Ml (0 (4)

Note that this formulation neglects hardening recovery (softening).
The evolution equation can be written as

z(t) = g((;p) (5)

which can be expressed in the variables of Equation 3 as shown in

Section V. After integrating, Equation 5 gives
t
2(0) = % + J' 2 (:)d (6)
0

0
where z is the initial hardness of the material.
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Under uniaxial flow conditions the material develops a directional
characteristic so that the rate of deformation is different for loading
in tension and compression; i.e., the Bauschinger effect. This effect
can be expressed by introducing two hardness variables, z+(t) and z (t)
that are used for positive (tensile) and negative (compressive) rates
of plastic deformation, respectively. Mathematically, then

| 2(t) =z () B (@) + 2 (1) H (-dt' ) (7)

where d?] is the uniaxial plastic deformation rate component and H is
the Heaviside unit step function. Notice that using Equation 7 in

Equation 4 does not produce a discontinuity in d?] since the jump
from z+ to z , or vis-a-vis, occurs when d?] is zero.

The values of z+(t) and z (t) can be determined from Equation 6 once
we develop a representation for 25 and 77, respectively. Recall z is
defined as the total rate of hardening due to an axial flow d?l.
Following the concepts of Reference 7 assume d?] is positive and let qi
and (1-g)z correspond to the isotropic and directional hardening
fractions* so that i+(t) =qz+ (1-9)z = z(t) and 2°(t) = q z - (1-q)z =
(29-1)z . However if the d?] is negative rather than positive, then
the hardening in tension and compression is given by (2q-1)z and 2z,

respectively. Thus we can write

. - dp (1) fj
.z+(T) =qz+ (1-q)z ———p£— &
and :
. AR ;
z (1) = qz - (1-q)z ——;l—~ (8)
|d11(1)|

*These are similar to isotropic and kinematic models of yield surface
plasticity.

S i it : —
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S ‘- s > .
If q=1 then 2z z and the model corresponds to isotropic hardening;
however, 1f q=0 then the model contains only directional hardening.
If q<0 then the model predicts softening. Combining Equations 6, 7,

and 8 gives

\1‘1‘1(;\ { d‘l'l(:)

- f (1=q)z (1) ~22eeu 7

dP ) 0 dp (1) (
11 11

The material parameter q could be approximated as a material constant
for more exact representations it may have to be treated as a history
dependent internal state variable. The first integral represents the
total isotropic hardening up to time t, whereas the total directional
hardening used to characterize the Bauschinger effect is given by the

second integral.

In the following Sections the above representations for isotropic
and uniaxial plastic flow will be extended to a full three-dimensional
anisotropic theory.

but
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SECTION III
CONSTITUTIVE FRAMEWORK FOR ANISOTROPIC PLASTIC FLOW

Consider the Prandtl-Reuss theory (Equation 2) for isotropic plastic
flow. These laws have an important property; namely a given deformation
rate component, d?] for example is parallel to the corresponding stress
component S]]. We will show that this property carries over to all
anisotropic materials.

Let us now rewrite the above theory to include anisotropic plastic
flow. The most general anisotropic flow equation can be written as

Do ey
dij )‘ijkl SkE (10)

where iijkﬁ is a fourth order tensor valued function of J2, T, and
state variables. Using the symmetry of d?j and Sij it follows that

-~ -~ -~

Ajikl R Aijik

Apjkg " (1)

Mathematically and conceptually it is convenient to replace the
deviatoric stress and rate of deformation tensors in Equation 10 by
six-dimensional vectors on the vector space ia, 0=1,2,...6. Thus, let us
define

=% 4
a o (]2)

= Da ia and

[l bd
=

and normalize the six-dimensional vector space such that

3 3 2 6 3 3

6

& o2 2
TP o T R W
a=1 i=1 j=1 a=1 i=1 j=1 (13)
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One such mapping, satisfying Equation 13 is * i
-~ s p -~ L,
. St 1 ol 11 {
N D T
b d9s fa 522 i
AR S ) T SR
Dy dis ) 33 (14) i
g
s 5 P B i
D[‘ = V2 dl.’ 'l[‘ /:2_ S12 i
R e Nk R DR :
D, =2 do, T, 2 s,,
s ST S
B, = V2 & T 2 Sa1
Using this notation the plastic work, Equation 4 can be rewritten as
l -~ -~
w = B - Fo an
¥ g - 4 (15) i
= - 3
The components of each of the two vectors T and D are linearly independent, y
as such the vectors T and D are orthogonal Cartesian vectors. If we let ;
a represent a three-dimensional proper orthogonal transformation such H
that 5" = a S qT, for example, then %
]
T =« CT and D' =CD (16) 3

where C is a six-dimensional proper orthogonal transformation that can
be easily constructed from the components of a. é

Let us now rewrite Equation 10 on the six-dimension of vector space as

A

D =

PN

) T i
e lu uﬁlb‘ (]7) i

& "%
=3 >

by Ilyushin and Lensky (Reference 12).

e el
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where \ is a six-dimensional square tensor. Let us assume that T can be
determined from a potential function. Then using commutativity of the
partial derivative, it follows that

- A ~ -
\ = p -
- } ! \u(\‘ \[{u (]8)

Since \ is symmetric and the components are real, there exist real
eigenvalues, \uu. Thus using A ™ q A QT. where Q {s a proper orthogonal
transformation, Equation 17 becomes

“Eafi g (19)

where A is a 6 x 6 diagonal tensor. The rate of Qeformation. p. and
stress, T, are vectors that use the efgenvectors e ~of ) as a basis.
Equation 19 has the advantage that all the anisotropy properties can

be described by the six eigenvalues Xad and the transformation Q so that
the structure of the equation is particularly simple. The details for
determining 9 are delayed until the end of the next section.

Next we assume that each non-zero component of A, can be expressed
as a single valued scalar function of the scalars J2. T, and Zaﬁ. where
Z ., =0 for a # 8, so that each non-zero component Zuﬁ corresponds

af
directly to a non-zero component of \a Mathematically, this is written

g
as

Yaa = FGL,LTZ )y no sum oon 2

A « 0 )
Since \a“ are diagonal elements of a second order tensor in the e, basis,

then Equation 20 implies that Zaa must also be diagonal components
of a second order tensor on the basis e, thus

2' - ¢z et (21)

~

In the isotropic theory relating to Equation 2 we imposed the
condition that the plastic flow is isochoric. For anisotropic flows this

R 1 e 19 v WY

T R TR T Y YT

—
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condition leads to considerable mathematical difficulties as well as a
physically inconsistent theory. Using Equation 19 consider the sum

D, + n2 +D, = \ll Tl + \?2 T2 * koo T‘ (22)
If the material is isotropic, then x]l = X22 = \33 = )\ and Equation 22
becomes

+ L . . . -
Dl D2 + 03 \(.‘\“ + .\22 + h'j'}‘ 0 (23)

for every choice of A. Thus the anisotropic flow model will reduce to

classical incompressible isotropic plasticity. However the volumetric

change D] + 02 + D3 will not be identically zero for anisotropic flows.
This appears to be consistent with experimental observations, since the
plastic Poisson ratio measured during plastic deformation is generally

different from one half (Reference 15).

10
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SECTION IV
STRUCTURE OF THE STATE VARIABLES

To establish a representation of g for anisotropic plastic flow
we follow the concepts underlying Equation 9. This was used to intro-
duce a nonsymmetric property into the plastic flow equation so that the
response in tension and compression, or shear to the left and right, are
different. To maintain this characteristic let us define Zau in the
following manner

+ =
Zau(t) . Zuu(t)H[na(t)] v zau(t)H[-Da(t)] (24)

where Z;“(t) and Z;u(t) are the hardness variables for positive and
negative plastic deformation rates.

It is informative to consider three different classes of mechanical
properties.

a) A material is defined as orientationally isotropic if

Z:B(t) - 27 (t) . 3 (25a)

B

and

Zua(t) =2z (t) I“B (258)
for all time and deformation histories. The quantity IaB is a six-
dimensional identity tensor,

{1 a = R
1 -
af 0 ad (26)

Thus, according to Equations 25 and 23 for equal values of stress, Ta.
the deformation rates are the same in all six coordinate directions of the
same sign. Further using either Equation 25a or 25b in Equation 21 gives

H =« cta'nc’ = 2"t (27)

~

n
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which shows that 2' (and g') are identical in all coordinate directions.

Note that this result follows since g transforms as a second order
diagonal tensor.

b) A material is skew symmetric if

o ™
zuﬁ(l) % luﬁ(t) (28)

for all time and deformation histories. This corresponds to no
Bauschinger effects in a uniaxial deformation history. Using Equations
19, 20, and 28 we can write, for example,

{(JI' o Z“u

N c w BT
) (-'I\N) = -t(.l2. SO -

‘aa” Taa

which is skew symmetry of the material function f.

¢) A material is defined as isotropic if it is both orientationally
isotropic and skew-symmetric.

Consider now the internal state tensor Z. Since the only non-zero
components of / are on the diagonal, Zuu are eigenvalues of / and e, are

the eigenvectors. Thus Z can be written as a six-dimensional vector
in the form

2(t) = 2 (t) e (29)
~ o o

Referring to the structure of Equation 9, let us rewrite the vector 7
in the same general form,

t -l t A
Z(t) = 9 + I Z' ()dr + [ Z (1v)dr (30)
i " L M 1

The vector ? is used to specify the initial hardness in each of the six
coordinate directions. The vectors ZI and ?A correspond to the rate

of fully isotropic and directional hardening, respectively. Note that
isotropic hardening is characterized by the first integral in Equation 9
whereas the second integral in Equation 9 characterizes orientationally

12
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anisotropic and non-skew symmetric hardening. Thus we can use the first
integral from Equation 9 directly into Equation 30 to obtain

R €.
q z(1)dy + ] Z (t) dn (31)

0 2
2(t) = 72 + e ]
- - Q 0~

0

where i(r) is calculated from Equation 5 using the total work as given
by Equation 15. Recall q is a material parameter describing the relative
amount of fully isotropic hardening.

Using Equation 19 it can be seen that there is a one to one relation-
ship between a deviatoric stress component Ta and the corresponding rate
of deformation D“. However, it is not expected that the vectors I and
Q are parallel since the components of g. and hence A, are not neces-
sarily equal. Let us assume that the rate of change of resistance to
plastic flow (hardness) is due essentially to the plastic straining.

That is, the change in resistance to plastic flow is in the direction
of the rate of plastic deformation p; so that zA and p are parallel.
Exprecsed mathematically

Y % v
e P § (32)

where u, are the "direction cosines" of the rate of deformation vector.

Hence we can write

D
- -4
uL “jl (33)

and |p| = (Q-p)]/z. This formulation gives the hardness as varying
according a cosine rule as proposed by Bodner (Reference 8). Using
again the second integral of Equation 9 and noting that |?AI = (1-q)z(1)

we can write ;
2(t) = % 4 o j QR dr +
~ ~ O 0

D“(t) t

e“-l—[—)—a(T)l . (1=-q)z (1) ua(x)dt

(34)

13
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Thus we have a specific form for the evolution of the tensor g. This
representation is based on the main assumption that the rate of
anisotropic hardening vector is parallel to the rate of plastic defor-
mation vector. The total anisotropy at any time depends on the integral
of 2(1) or the history ot the deformation. Thus, the representation

has the necessary path dependence.

: Returning to Equation 19, it is necessary to know the transformation
E Q in order to obtain a diagonal form for the material tensor \ From
Equation 34 it can be seen that Z is written relative to the basis e,
the eigenvectors, which are fixed during the deformation history (O, t).
Thus the choice of Q depends only upon the initial anisotropy 2. which

is assumed to be a known initial condition. Further if the material

is initially isotropic, then every set of vectors é are eigenvectors

and the vectors D and T can be chosen such that the components are
physically convenient for the shape of the body.

There i1s a limited amount of experimental evidence available for
the anisotropic deformation of beryllium. In general, Nicholas
(Reference 13) has shown that a comprehensive anisotropic hardening
theory is necessary to predict the experimental results for beryllium.
The results published by Lindholm, Yeakly, and Davidson (Reference 14)
for beryllium in biaxial tension showed that the above theory is
qualitatively consistent with the data in that the stress-strain curves
in the plastic range are ordered with loading history according to the
cosine law given by Equation 32.

14

3
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SECTION V
A SPECIFIC REPRESENTATION

The purpose of this Section is to briefly summarize the governing
equations for deformation induced anisotropic plastic flow in a form
consistent with the Bodner-Partom model for isotropic plastic flows.
Squaring Equation 2 gives

o « 2@

T)J
2 )

s Z,
2 k 2 (35)

where Dg and JZ are the second invariants of dgj and Sij’ respectively.
Substituting Equation 35 into Equation 2 gives

=/pP T)

P
444 i e (36)

il

This result is reminiscent of the Prandtl-Reuss theory except that no
yield surface is used with Equation 36; i.e., Dg is continuous. Using
one state variable and motivated by the equations of dislocation
dynamics, Bodner and Partom selected Dp such that

dp = D, exp [%(—)] -—i -

where the constant D0 is the 1imiting strain rate of the material and n,
generally a function of temperature, relates to the strain rate sensi-
tivity. Since z is a single internal variable that controls the rate
process it clearly must be a measure of the resistance to plastic flow
of the material. Specifically Equation 5, is chosen in the form

(38)

2(1‘) = m(z1 - zo) exp [-m wp('r)]fup = m(z1 - 2)S§

P
13 %13

where m, 2y and z, are constants controlling the rate and level of the
hardening characteristics, Equation 38 is consistent with the general
form for z, Equation 3.
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The representation for anisotropic flows can be completely determined
by combining the above isotropic representation with the results in
Sections III and IV. The plastic deformation rate, Equation 19 becomes

2
an

J )

Z

)n fT‘—_“ (39)

2
-

D, = D, exp -i(

where Da and Td are the six-dimensional rate of deformation and deviatoric
stress vectors defined by the mapping (Equation 14). The components of
the hardening tensor Zau are obtained by substituting Equation 38 into
Equation 34.

| The anisotropic plastic representation, Equations 39, 38, and 34,
requires the use of five material constants (q.n.m.z].zo) that must be
determined experimentally (D0 is a scale factor). It is useful to note
that these material parameters can all be determined from a one-dimensional
experimental program. There were no material functions introduced by

the anisotropy development. This leads to a specific model that can be
readily evaluated for different materials.

In closing it is important to note that the constitutive equations
are a nonlinear coupled system that can, most likely be solved numerically.
Numerical finite difference and finite element procedures have been
developed to solve boundary value problems under isotropic hardening
conditions. It is expected that these codes can be modified to include
the anisotropic model, however, to date no numerical work has been done
using the above system of equations.
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